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A discussion is given of the article mentioned in the title. The conclusions of this article,
based on classical fracture mechanics, are shown to be questionable in the light of new the-
ory and the there preferred mode II asymmetric four point bending test is shown to be
problematic in giving the right values of fracture toughness and release rate. The in the
article given data provide information on equivalent mode II softening behaviour and con-
firms that the strength of the intact fracture plane then is determining, the same as applies
for mode I.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the here discussed article [1], the ‘‘asymmetric four point bending’’ (AFPB) test is regarded to be the best test for frac-
ture mechanics mode II because it does not show the drawbacks of the mostly applied end-notched flexure (ENF) test. How-
ever this conclusion, based on classical fracture mechanics is questionable in the light of new theory. It will be shown that
these drawbacks do not exist at proper treatment and that the AFPB test is really problematic in giving the right values of
fracture toughness and release rate. However, the data of [1] provide information on equivalent mode II softening behaviour
and confirms that the strength of the intact fracture plane then is determining, the same as applies for mode I. To show this,
the results of the applied singularity approach has to be discussed in the light of the fracture mechanics theory of [2] leading
to a new conclusions.

2. Discussion of the applied singularity approach

The in [1] applied compliance factor:
cII ¼
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is based on the solution of the Airy stress function of [3] by chosen elementary row solutions in polar coordinates in the form
of: f(h) � r�0.5. The thereof following solution is not unique, but one of the multiple possible solutions of the Airy stress func-
tion. A solution of the Airy stress function is in principle not unique, because multiple allowable equilibrium systems, dif-
fering an internal equilibrium system from each other and not violating the failure criterion, are possible as (lower
bound) solutions. In [2] e.g. a similar solution of the Airy stress function is given, based on the same elementary solutions
in the form of: f(h) � r�0.5 but now in the real measured material compliances. There thus is no reason to apply Eq. (1).
For wood both mentioned solutions may act as lower bound solutions for the most simple loading cases, thus only for uni-
axial strengths (at r = r0, the radius of the crack tip). The highest general lower bound solution has to be found because this
will be the closest to the real solution. This highest lower bound solution of the Airy stress function, in elliptic coordinates, is
given in [2] and is equal to the real solution because it is identical to the Wu-equation of the strength for combined loading,
Eq. (11). This last is not the case for all known solutions in polar coordinates which also conflict with the equilibrium con-
ditions of the wood matrix, as is shown in [2]. Thus there only remains one possible solution. According to this (elliptic) con-
tinuum mechanics solution of [2], which applies for a crack in a large space, the factor:
cII ¼ 1=ð4n2
6Þ ð3Þ
with n6 = (2 + m21 + m12)(Gxy/Ex) in Eq. (2), as estimate for the compliance for oblique off axis crack extension. For mode I is
cI = 1.

The application in [1] of the wrong factor cII and other schematization errors lead to a wrong value of f(a/W) in:
K IIc ¼ s0
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because f(a/W) is not only applied as geometry factor, accounting for the form of the specimen, but is applied as a correction
factor:
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This factor hides errors in GII and a. As geometry factor it could be expected that f(a/W) � 1 for small crack lengths. However
this value f(a/W) � 1 is found at a/W � 0.7 in [1] and f(a/W) thus is too low due to a too low value of GIIc (although this is
compensated by a too low value of a by the input of the nominal value of the crack length a).

Regarding the fracture energy GIIc or GIc, the following should be realized. When a cantilever is loaded by a load P, at the
moment of crack propagation, the beam deforms and the load goes down by an displacement of say d. The external energy,
applied to the beam, then is Pd. The increase of elastic energy is Pd/2. Thus the energy for fracture is: Pd � Pd/2 = Pd/2, which
is equal to the elastic energy increase. When the external load is prevented to move, the whole elastic energy change is ap-
plied as fracture energy. This equality principle is the basis of the (elastic) compliance method and the finite element virtual
crack closure method, determining the elastic energy for crack closure as measure of the fracture energy. For full plastic crack
extension however, there is no change of elastic energy and all external energy is applied for crack extension. In the case of
the cantilever above, the fracture energy then is Pd, twice the elastic estimate. In principle, failure by collinear crack exten-
sion due to pure shear loading and pure coaxial shear deformation is plastic in that direction and the fracture energy is twice
the assumed and so calculated pure elastic strain energy change by collinear crack extension. Similar to plastic deformation
is work dissipation by a high density of small cracks, extending and merging, and thus preventing a rise of the mean stress,
similar to plastic flow, as applies e.g. in the fracture process zone or in the whole fracture plane when this is high loaded in
the ultimate state. The right ‘‘elastic’’ value of GIIc, based on elastic energy change during crack extension, follows from
oblique crack extension, which is coupled to GIc. Both follow from tensile failure of the crack wall near the crack tip. Accord-
ing to the derivation of the Wu-criterion of [2] therefore is:
GIIc ¼ 4GIc ð6Þ
for oblique crack extension (see e.g. Fig. 1) by the ultimate uniaxial plane tangential tensile stress (cohesion strength) at
the crack-tip wall. For a flat elliptic crack in a stress field, failure, thus crack extension, occurs there at the crack wall where
the tensile stress is maximal and ultimate, rt, leading to the expression [2]:
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for stresses in the isotropic wood matrix. For flat cracks is near the crack tip the elliptic coordinate: n0 ¼
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For sxy = 0, crack extension is at the crack tip and the (mode I) extension is collinear. For ry = 0, crack extension is just
behind the tip and this (mode I) extension is oblique, off axis, perpendicular to the elliptic crack wall but is regarded to
be a mode II extension. The same applies for combined stresses, called mixed mode extension.



Fig. 1. Shear failure by the asymmetric four point bending test with small center-slit. Sketch after the photo of [4].
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Clear wood fracture is always by the same small cracks with the same diameter 2r0 and the same initial crack length c and
Eq. (8) can be read as the common failure criterion of [6]:
1 ¼ ry
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ð9Þ
If KIc and KIIc are material properties, then fracture should be always by the same small cracks, with diameter 2r0, at the
equivalent cohesion strength rt. The small cracks extend towards the macro crack-tip, causing in that way macro-crack
propagation.

Thus the stress analysis shows that there always is tensile (mode I) failure for any combined normal stress – shear loading
as derived in [2]. Although Eq. (6) is derived for cracks in an infinite medium, it also appears to apply for cracks in specimens
with limited dimensions. This is due to the Wu-failure criterion, which applies as well for small cracks (clear wood) as for
timber with defects and for macro-cracks in a specimen. This confirms that macro crack propagation is due to small cracks
multiplication and merging. The real empirical confirmation of Eq. (6) follows from fracture mechanics research of Gustafs-
son, showing GIIc = 3.5GIc (correlation R2 = 0.64), which is smaller than 4, probably due to the regarded too high GIc – value
following from the area under the softening curve. Thus, by not regarding oblique crack extension or ‘‘plastic’’ collinear crack
extension at pure shear loading in [1], but treating this by elastic fracture mechanics by calculating the elastic energy change
by the finite element virtual crack closure method, possibly a two times too low ratio, thus: GIIc = 2GIc is found. Other values
can be measured depending on the type of test, size and thickness etc. and on the level of (the always present) mixed mode
loading part and whether or not the real critical stress state at the top of the loading curve is regarded or the end state of
softening (as in AFPB). Mentioned by Yoshihara are values between 1.7 and 2.6.

Because the finite element virtual crack closure technique cannot be applied for critical oblique crack extension, GIIc

should follow from Eq. (6) by measuring the GIc – value. This application will at least gives a reasonable lower bound solution
of the strength.

Determining for the strength are flat cracks and fracture mechanics thus is about plane stress and strain problems
and uniaxial tensile failure represented by the Wu-equation applying for any combined shear- normal stress loading.
Solutions as:
rij ¼ K If1ðh; cijÞ � r�0:5 þ K IIf2ðh; cijÞ � r�0:5 þ K IIIf3ðh; cijÞ � r�0:5 ð10Þ
thus do not apply for linear elastic fracture mechanics, not only because this is against the Wu failure criterion, but also be-
cause different modes do not apply for oblique, off axis, crack extension. The fully elastic solution, Eq. (11), represents at least
an allowable equilibrium system, satisfying compatibility and boundary conditions and nowhere else than in one point
reaching the strength criterion, thus is a limit analysis lower bound solution, differing, in principle, a safe internal equilib-
rium system with the real occurring solution. However, is as lower bound solution equal to the real occurring solution which
is identical to Eq. (11).
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The by the theory predicted property GIIc = 4GIc thus can be applied for lower bound solutions and is also verified by mea-
surements [2]. Eq. (11) for combined stresses, can be expressed in fracture energies and the determining total critical frac-
ture energy:
Gf ¼ GI þ GII ð12Þ
according to [2], Chapter 5 as:
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The last three terms represent a quadratic equation in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In the last equations is: Gf ¼ GI þ GII ¼ cGf þ ð1� cÞGf and:
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For pure shear, c = 0 and it is sufficient to measure only GIc because GIIc = 4GIc.

3. Discussion of the apparent decrease of the fracture toughness at softening

The strength behaviour of long cracks in [1] appears to be similar to softening behaviour after passing the top of the curve,
similar to Fig. 2. For mode I when the specimen is unloaded and reloaded to measure KIIc for further crack propagation in the
softened state. For a not decreasing KIIc – value, softening should follow the Griffith locus given by Fig. 3.

The analysis, following [1] then is as follows:
Eq. (4) of [1] is for the top of the loading curve
K II;0 ¼ sn
ffiffiffiffiffiffiffiffi
pac
p

ð16Þ
Fig. 2. Stress – displacement of specimen see [2].

Fig. 3. Softening curve according to Eq. (3.12) of [2].



Fig. 4. Specimen b � l and thickness t, containing a flat crack of 2c.
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because f(a/W) = 1 for lower values a/W < 0.7. The nominal Griffith shear stress is:
sn ¼ 3P=BW ð17Þ
As follows from [2], Eq. (3.13), softening occurs at a critical density of cracks, thus when: ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bl=6p

p
for mode I, in the

dimensions of Fig. 4 below. For the case of [1], b = W and l = c1W, proportional to W, as a St. Venant distance. A similar rela-
tion applies for ‘‘mode’’ II, following from the Griffith locus derivation for compression and shear. Thus
ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wc1W=c2
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For higher values of a is, as applied in [1]:
K IIc ¼ sn
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It is shown in [2] that after the first stage of softening, KII is not constant any more, but the strength of the decreasing
intact area of the fracture plane is determining for the possible loading. Thus not the nominal stress but the ultimate real
stress ft in the fracture plane is determining. Thus Eq. (16) becomes:
ft ¼ K II;0
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and Eq. (19):
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and from Eqs. (20) and (21) follows:
K IIffiffiffiffiffiffi
pa
p

� ð1� a=WÞ � f ða=WÞ
¼ K II0ffiffiffiffiffiffiffiffiffiffiffiffiffi

pc3W
p

� ð1� c3Þ
or :

K IIffiffiffiffiffiffiffiffiffiffiffi
a=W

p
� ð1� a=WÞ � f ða=WÞ

¼ K II0ffiffiffiffiffi
c3
p � ð1� c3Þ

¼ c4 ðconstantÞ

ð22Þ
According to Fig. 12 of [1], there is no difference (by volume effect) between the data for W = 40 mm and W = 20 mm, thus
mean values of both can be regarded.
For a=W ¼ 0:7; K II ¼ 0:79 MPa
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For a=W ¼ 0:8; K II ¼ 0:71 MPa
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For a=W ¼ 0:9; K II ¼ 0:52 MPa
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m
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thus : c4 ¼ 3:28 ð25Þ
f(a/W)=1.0 for a/W = 0.7 and is 1.2 for a/W = 0.8 and is 1.67 for a/W = 0.9.
Thus the mean value of c4 is:
c4 ¼ 3:24 ð26Þ
Numerically this calculation is:
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It thus is confirmed by the data of [1] that, (due to small crack propagation in the fracture plane), the strength of the intact
part of the fracture plane is determining and not KII. This result was found before for KI in [2] based on the softening data of [5].

KII is determining at the top of the loading curve and according to the (ENF) test this is: 1:57 MPa
ffiffiffiffiffi
m
p

. The theory of [2]
thus explains the lower values of KII for long initial crack lengths. The value of K II ¼ 0:52 MPa

ffiffiffiffiffi
m
p

indicates the last small
crack joining stage of [2], because KII is reduced by a factor 0.52/1.57 = 0.33 with respect to the Griffith value at the top
of the equivalent loading curve. Also the value of 0.79 for a/W = 0.7 is in that softening range of reduced KII, showing an
apparent KII – reduction factor of: 0.79/1.57 = 0.5.

As mentioned the values of 0.57 and 0.79 are expected to be too low, based on the elastic energy change at fracture. This is
compensated by the 3ENF-value which also is about the same factor too low, based on a 5% rule, which should not be applied
for KII – tests, because this value is too far away from the top of the curve. The value from literature is about 1:9—2 MPa

ffiffiffiffiffi
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p

,
thus a factor 2/1.57 = 1.3 higher.

Based on the possible factor 2 higher fracture energy of [1], the value of KII follows from a
ffiffiffi
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mal value further is c3 = 0.33 and it is possible to choose this as a high lower bound solution. Then Eq. (22) becomes:
K II0 ¼ c4 �
ffiffiffiffiffi
c3
p
� ð1� c3Þ ¼

ffiffiffi
2
p
� 3:24 �

ffiffiffiffiffiffiffiffiffiffi
0:33
p

� 0:667 ¼ 1:76 MPa
ffiffiffiffiffi
m
p

for Spruce. This shows that then the value of 1:57 MPa
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, according to the 3ENF – 5% rule, is a too low, lower bound.

4. Discussion of the end-notched flexure test

In [1], the so called three-point bend end-notched flexure (3ENF) test (i.e. the single-edge notched beam test, SENB) was
done as control on the value of KIIc obtained by the AFPB-test and it was found that the 3ENF-values are more than a factor 2–
3 higher. This has to be explained. For an analysis, the 3ENF- loading case is regarded as a result of two different loading
cases.

In Fig. 5, the ‘‘mode II’’ test is represented by case a + a00. If the sign of the lower reaction force V of this case is reversed and
P = 0, the loading of the mode I, double cantilever beam (DCB) test is obtained, identical to loading case c with N = 0. In Fig. 5,
case a + a00 is split in case a and in case a00, as loading of the upper and the lower cantilever. Case a is identical to case a’ which
is similar to end-notched beams discussed in [2] Chapter 6. This case behaves like the mode I fracture test as can be seen by
loading case c. The loading near the crack tip, given by case a, can be seen as the result of superposition of the stresses of
cases b and c, where the loading of case b is such, that the un-cracked state of the beam, case b’, occurs. The loading of case
c is such that the sum of cases b and c gives loading case a. Case c is the real crack problem and the critical value of strain
energy release rate Gc can be found by calculating the differences of elastic strain energies between case a’ and b’, the cracked
and un-cracked system [2]. Case c shows the loading of the mode I – DCB-test by V and M, combined with shear loading by N
and the energy release rate thus will be somewhat smaller (by this combination with N) than the value of the puce DCB-test.

For the loading case a00, the same stresses occur as in case a, however with opposite directions of M and V with respect to
those of case c, according to case c00, causing crack closure. To prevent that crack closure c00, and friction, dominates above
crack opening c, the crack slit has to be filled with a Teflon sheet. By superposition of cases c and c00, case c + c00 of shear load-
ing of pure mode II occurs, as crack problem due to the total loading. The normal load couple of 2N is just the amount to close
the horizontal shift of both beam ends with respect to each other at that loading stage. This explains the applicability of the
virtual crack closure technique. The fracture energy also can be found by subtraction of elastic energies of the cracked and
intact states a + a00 and b’ (see [2], Chapter 6). The equations of these energies based on the calculated deflections according to
the elementary equilibrium equations of the beams are the same for determination of GII as for GI according to the DCB-test.
Only the ultimate loads are different. This will be explained in the following. The elementary equilibrium equations for
slender beams can be seen as first terms of a row expansion of the real bending and shear stresses which determine the
Fig. 5. Fracture loading of the ‘‘three-point bend end-notched flexure test (3ENF).
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deformation of the beam and thus the work of the external load. The higher order terms need not to be regarded because
they form internal equilibrium systems, not contributing in total to the beam deformation. Of course the elastic shear defor-
mation is primary and not negligible in shear failure tests (see [2], Chapter 6) and should be accounted. However, the in [1]
mentioned defection by small cracks extension, causing a plastic like dissipation at the crack tip, should not be accounted.
This is, just as crack bridging, part of the fracture process within the elastic-‘‘plastic’’ boundary around the crack and thus is
not part of the linear elastic fracture mechanics for crack extension from this boundary. By crack extension of the initial hor-
izontal slit, the original beam is split in two equal smaller beams above each other. Because of the high shear stress, there is
sufficient plastic shear deformation of these two beams to make mutual load redistribution possible. Because the compres-
sion perpendicular to the grain due to the central load is higher in the upper beam and because the Wu-equation also applies
for combined shear with normal stress in grain direction as shown and explained in [6], KII will be higher than KIIc in the
upper beam near the crack tip by the influence of compression perpendicular and of bending compression of the intact part
of the beam, while this is the reverse for the lower beam under influence of bending tension of the intact part of the beam.
This means that system c of Fig. 5 dominates above system c00, and crack extension occurs by tensile mode I at a lower resul-
tant value than KIc because of the combined failure with shear stress due to N. Failure by the opening mode tensile stress thus
also occurs in this apparent pure shear fracture case c + c00 of Fig. 5.

5. Conclusions regarding differences between the 3ENF- and AFPB-tests

The Wu-equation is as real solution, the minimum energy solution. Any other forced failure mode, is not according to the
Wu-equation and thus needs more energy and is an upper bound solution, violating the failure criterion. In that case the
determination of the elastic energy change gives a too low value of the fracture energy. Besides macro-crack extension mi-
cro-crack extension may become determining when overloading of the fracture plane occurs before the critical stage of the
macro-crack. The found fracture energy then follows from the ultimate state of the fracture plane as applies for the AFPB-test
and Eq. (9) applies. Also the 3ENF-test depends on a high enough loading of the parts for stress redistribution to make split-
ting possible. Thus the analysis in Sections 3 and 4 shows that KIIc-values are fully dependent on choices of test equipment
and dimensions of test specimens. These values should be compared, by a form-factor f(a/W) to the case of a crack in an infi-
nite medium which provides by definition the real KIIc-value and thus is based on oblique crack extension of linear elastic
fracture mechanics.

Thus the difference between the in [1] applied 3ENF- and AFPB-test is, that in the 3ENF-test the fracture plane is not over-
loaded and the shear stress remains the same at crack extension and thus also the value of KIIc so that softening will follow
the Griffith locus, while in the AFPB-test the loading of the fracture plane increases by crack extension, leading to overloading
to the ultimate state and thus failure of the whole fracture plane (also outside the macro-crack tip region), acting as an
apparent decrease of KIIc as shown in Section 3. The AFPB-test further is unstable for initial long cracks, indicating that
the test is not stiff enough to follow steeper softening lines for shorter crack lengths and thus is not able to measure the real
maximal KIIc-value at the top of the real critical loading curve for macro-crack extension and the test cannot be used for that
purpose. Clearly at initial loading small crack extension is already to a long crack stable state. The mode I tests of [5] also lead
to overloaded fracture planes, but these tests were stiff enough to show the whole loading and softening curve.

6. Comment and conclusion

– The compliance factor according to Eq. (1) should not be applied, because the solution whereupon it is based does not
satisfy the Wu-fracture criterion and does not satisfy the equilibrium conditions of the isotropic wood-matrix.

– The too low value of f(a/W) of [1] shows a too low estimate of GIIc and indicates that not only the elastic energy change at
collinear crack extension determines the fracture energy but also energy dissipation by small crack formation similar to
plastic flow. This is confirmed by the ultimate state of the fracture plane, showing a constant ultimate stress on the intact
part of the fracture plane.

– As known for wood, the fracture energy for pure mode I crack extension is equal to the elastic energy change by this crack
extension. The derivation of the Wu-equation shows that the mixed mode loading, (and thus also mode II loading alone)
is coupled to mode I. Both follow from tensile failure of the crack wall near the crack tip. For off axis crack extension by
pure shear loading follows by this coupling: GIIc = 4GIc. For any combined loading case, there always is tensile (mode I)
failure in accordance with the Wu-equation, which is the real minimum energy solution of elastic fracture mechanics.
Any other forced failure mode, is not according to the Wu-equation and thus needs more energy and is an upper bound
solution, violating the failure criterion. The fracture energy then is not equal to the elastic energy change at crack
extension.

– By not regarding oblique crack extension or plastic collinear crack extension at pure shear loading of the AFPB-test of [1],
but treating this by elastic fracture mechanics by calculating the elastic energy change by the finite element virtual crack
closure method, a two times too low ratio, thus: GIIc = 2GIc is possible. Analysis of test-data is necessary to refine this ratio
value.

– The strength behaviour of a long crack with a high loaded fracture plane appears to be similar to softening behaviour after
the first stage of passing the top of the curve. This occurs when the test equipment is not stiff enough to follow the soft-
ening curve.
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– It is shown in [2], based on the softening data of [5], that for mode I, after the first stage of softening, due to small crack
propagation and merging in the high loaded fracture plane, not KI is constant, but the strength of the decreasing intact
area of the fracture plane is determining. Thus not the nominal stress but the ultimate real stress ft in the intact part
of the fracture plane is determining for the ultimate load at that softening state.

– New is, that analysis of the AFPB-tests of [1] show that the same applies for mode II. Thus:- The in [1] measured apparent
decrease of KIIc for long cracks in the AFPB-tests, is for every crack length explained by the strength of the remaining intact
part of fracture plane.

– The AFPB-test is unstable for long cracks, indicating that the test-equipment is not stiff enough to follow steep parts of the
softening line for shorter crack lengths and thus is not able to show the real maximal KIIc value of macro-crack extension
at the top of the loading curve.
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